Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana.

Identifieur interne : 003065 ( Main/Exploration ); précédent : 003064; suivant : 003066

Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana.

Auteurs : Peng Chen [République populaire de Chine] ; Gunilla J Ger ; Bo Zheng

Source :

RBID : pubmed:20836892

Descripteurs français

English descriptors

Abstract

BACKGROUND

In all domains of life, transfer RNA (tRNA) molecules contain modified nucleosides. Modifications to tRNAs affect their coding capacity and influence codon-anticodon interactions. Nucleoside modification deficiencies have a diverse range of effects, from decreased virulence in bacteria, neural system disease in human, and gene expression and stress response changes in plants. The purpose of this study was to identify genes involved in tRNA modification in the model plant Arabidopsis thaliana, to understand the function of nucleoside modifications in plant growth and development.

RESULTS

In this study, we established a method for analyzing modified nucleosides in tRNAs from the model plant species, Arabidopsis thaliana and hybrid aspen (Populus tremula × tremuloides). 21 modified nucleosides in tRNAs were identified in both species. To identify the genes responsible for the plant tRNA modifications, we performed global analysis of the Arabidopsis genome for candidate genes. Based on the conserved domains of homologs in Sacccharomyces cerevisiae and Escherichia coli, more than 90 genes were predicted to encode tRNA modifying enzymes in the Arabidopsis genome. Transcript accumulation patterns for the genes in Arabidopsis and the phylogenetic distribution of the genes among different plant species were investigated. Transcripts for the majority of the Arabidopsis candidate genes were found to be most abundant in rosette leaves and shoot apices. Whereas most of the tRNA modifying gene families identified in the Arabidopsis genome was found to be present in other plant species, there was a big variation in the number of genes present for each family.Through a loss of function mutagenesis study, we identified five tRNA modification genes (AtTRM10, AtTRM11, AtTRM82, AtKTI12 and AtELP1) responsible for four specific modified nucleosides (m1G, m2G, m7G and ncm5U), respectively (two genes: AtKTI12 and AtELP1 identified for ncm5U modification). The AtTRM11 mutant exhibited an early-flowering phenotype, and the AtELP1 mutant had narrow leaves, reduced root growth, an aberrant silique shape and defects in the generation of secondary shoots.

CONCLUSIONS

Using a reverse genetics approach, we successfully isolated and identified five tRNA modification genes in Arabidopsis thaliana. We conclude that the method established in this study will facilitate the identification of tRNA modification genes in a wide variety of plant species.


DOI: 10.1186/1471-2229-10-201
PubMed: 20836892
PubMed Central: PMC2956550


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana.</title>
<author>
<name sortKey="Chen, Peng" sort="Chen, Peng" uniqKey="Chen P" first="Peng" last="Chen">Peng Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences</wicri:regionArea>
<wicri:noRegion>Chinese Academy of Sciences</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="J Ger, Gunilla" sort="J Ger, Gunilla" uniqKey="J Ger G" first="Gunilla" last="J Ger">Gunilla J Ger</name>
</author>
<author>
<name sortKey="Zheng, Bo" sort="Zheng, Bo" uniqKey="Zheng B" first="Bo" last="Zheng">Bo Zheng</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20836892</idno>
<idno type="pmid">20836892</idno>
<idno type="doi">10.1186/1471-2229-10-201</idno>
<idno type="pmc">PMC2956550</idno>
<idno type="wicri:Area/Main/Corpus">003065</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003065</idno>
<idno type="wicri:Area/Main/Curation">003065</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003065</idno>
<idno type="wicri:Area/Main/Exploration">003065</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana.</title>
<author>
<name sortKey="Chen, Peng" sort="Chen, Peng" uniqKey="Chen P" first="Peng" last="Chen">Peng Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences</wicri:regionArea>
<wicri:noRegion>Chinese Academy of Sciences</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="J Ger, Gunilla" sort="J Ger, Gunilla" uniqKey="J Ger G" first="Gunilla" last="J Ger">Gunilla J Ger</name>
</author>
<author>
<name sortKey="Zheng, Bo" sort="Zheng, Bo" uniqKey="Zheng B" first="Bo" last="Zheng">Bo Zheng</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (enzymology)</term>
<term>Arabidopsis (genetics)</term>
<term>Computational Biology (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutagenesis, Insertional (MeSH)</term>
<term>Nucleic Acid Conformation (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>RNA, Plant (genetics)</term>
<term>RNA, Plant (isolation & purification)</term>
<term>RNA, Plant (metabolism)</term>
<term>RNA, Transfer (genetics)</term>
<term>RNA, Transfer (isolation & purification)</term>
<term>RNA, Transfer (metabolism)</term>
<term>Sequence Alignment (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN de transfert (génétique)</term>
<term>ARN de transfert (isolement et purification)</term>
<term>ARN de transfert (métabolisme)</term>
<term>ARN des plantes (génétique)</term>
<term>ARN des plantes (isolement et purification)</term>
<term>ARN des plantes (métabolisme)</term>
<term>Alignement de séquences (MeSH)</term>
<term>Arabidopsis (enzymologie)</term>
<term>Arabidopsis (génétique)</term>
<term>Biologie informatique (MeSH)</term>
<term>Conformation d'acide nucléique (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Mutagenèse par insertion (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Plant</term>
<term>RNA, Transfer</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN de transfert</term>
<term>ARN des plantes</term>
<term>Arabidopsis</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>RNA, Plant</term>
<term>RNA, Transfer</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>ARN de transfert</term>
<term>ARN des plantes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>RNA, Plant</term>
<term>RNA, Transfer</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN de transfert</term>
<term>ARN des plantes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Computational Biology</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis, Insertional</term>
<term>Nucleic Acid Conformation</term>
<term>Phylogeny</term>
<term>Sequence Alignment</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Biologie informatique</term>
<term>Conformation d'acide nucléique</term>
<term>Données de séquences moléculaires</term>
<term>Gènes de plante</term>
<term>Mutagenèse par insertion</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>In all domains of life, transfer RNA (tRNA) molecules contain modified nucleosides. Modifications to tRNAs affect their coding capacity and influence codon-anticodon interactions. Nucleoside modification deficiencies have a diverse range of effects, from decreased virulence in bacteria, neural system disease in human, and gene expression and stress response changes in plants. The purpose of this study was to identify genes involved in tRNA modification in the model plant Arabidopsis thaliana, to understand the function of nucleoside modifications in plant growth and development.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In this study, we established a method for analyzing modified nucleosides in tRNAs from the model plant species, Arabidopsis thaliana and hybrid aspen (Populus tremula × tremuloides). 21 modified nucleosides in tRNAs were identified in both species. To identify the genes responsible for the plant tRNA modifications, we performed global analysis of the Arabidopsis genome for candidate genes. Based on the conserved domains of homologs in Sacccharomyces cerevisiae and Escherichia coli, more than 90 genes were predicted to encode tRNA modifying enzymes in the Arabidopsis genome. Transcript accumulation patterns for the genes in Arabidopsis and the phylogenetic distribution of the genes among different plant species were investigated. Transcripts for the majority of the Arabidopsis candidate genes were found to be most abundant in rosette leaves and shoot apices. Whereas most of the tRNA modifying gene families identified in the Arabidopsis genome was found to be present in other plant species, there was a big variation in the number of genes present for each family.Through a loss of function mutagenesis study, we identified five tRNA modification genes (AtTRM10, AtTRM11, AtTRM82, AtKTI12 and AtELP1) responsible for four specific modified nucleosides (m1G, m2G, m7G and ncm5U), respectively (two genes: AtKTI12 and AtELP1 identified for ncm5U modification). The AtTRM11 mutant exhibited an early-flowering phenotype, and the AtELP1 mutant had narrow leaves, reduced root growth, an aberrant silique shape and defects in the generation of secondary shoots.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Using a reverse genetics approach, we successfully isolated and identified five tRNA modification genes in Arabidopsis thaliana. We conclude that the method established in this study will facilitate the identification of tRNA modification genes in a wide variety of plant species.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20836892</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>11</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<PubDate>
<Year>2010</Year>
<Month>Sep</Month>
<Day>14</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana.</ArticleTitle>
<Pagination>
<MedlinePgn>201</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-10-201</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">In all domains of life, transfer RNA (tRNA) molecules contain modified nucleosides. Modifications to tRNAs affect their coding capacity and influence codon-anticodon interactions. Nucleoside modification deficiencies have a diverse range of effects, from decreased virulence in bacteria, neural system disease in human, and gene expression and stress response changes in plants. The purpose of this study was to identify genes involved in tRNA modification in the model plant Arabidopsis thaliana, to understand the function of nucleoside modifications in plant growth and development.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In this study, we established a method for analyzing modified nucleosides in tRNAs from the model plant species, Arabidopsis thaliana and hybrid aspen (Populus tremula × tremuloides). 21 modified nucleosides in tRNAs were identified in both species. To identify the genes responsible for the plant tRNA modifications, we performed global analysis of the Arabidopsis genome for candidate genes. Based on the conserved domains of homologs in Sacccharomyces cerevisiae and Escherichia coli, more than 90 genes were predicted to encode tRNA modifying enzymes in the Arabidopsis genome. Transcript accumulation patterns for the genes in Arabidopsis and the phylogenetic distribution of the genes among different plant species were investigated. Transcripts for the majority of the Arabidopsis candidate genes were found to be most abundant in rosette leaves and shoot apices. Whereas most of the tRNA modifying gene families identified in the Arabidopsis genome was found to be present in other plant species, there was a big variation in the number of genes present for each family.Through a loss of function mutagenesis study, we identified five tRNA modification genes (AtTRM10, AtTRM11, AtTRM82, AtKTI12 and AtELP1) responsible for four specific modified nucleosides (m1G, m2G, m7G and ncm5U), respectively (two genes: AtKTI12 and AtELP1 identified for ncm5U modification). The AtTRM11 mutant exhibited an early-flowering phenotype, and the AtELP1 mutant had narrow leaves, reduced root growth, an aberrant silique shape and defects in the generation of secondary shoots.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Using a reverse genetics approach, we successfully isolated and identified five tRNA modification genes in Arabidopsis thaliana. We conclude that the method established in this study will facilitate the identification of tRNA modification genes in a wide variety of plant species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Peng</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jäger</LastName>
<ForeName>Gunilla</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Bo</ForeName>
<Initials>B</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>09</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9014-25-9</RegistryNumber>
<NameOfSubstance UI="D012343">RNA, Transfer</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016254" MajorTopicYN="N">Mutagenesis, Insertional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012343" MajorTopicYN="N">RNA, Transfer</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>05</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>09</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20836892</ArticleId>
<ArticleId IdType="pii">1471-2229-10-201</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-10-201</ArticleId>
<ArticleId IdType="pmc">PMC2956550</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>IUBMB Life. 2005 Oct;57(10):693-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16223710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Oct 1;17(19):5783-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9755178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2005 Apr;11(4):424-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15769872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1987;56:263-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3304135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2002 Oct;8(10):1253-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12403464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1982 Mar 11;10(5):1653-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6917975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 23;279(17):17850-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14970222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Dec 1;12(23):3650-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9851972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 1999 Jan;5(1):66-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9917067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Jun;25(11):4359-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15899842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2008 Jan;14(1):158-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18025252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1983 Aug 12;114(3):1161-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6615511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1987 Jan;7(1):177-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3031456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 1999 Aug;5(8):1105-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10445884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 May 17;25(10):2142-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16642040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16598-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17062755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 1972 Aug;7(4):251-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5073318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 Mar;15(3):1459-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14718557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2007;425:153-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17673083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1984 May 31;121(1):243-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6547340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1995 Oct 17;1264(1):87-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7578262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1986 Jul 25;261(21):9703-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2426253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2007 Mar;13(3):404-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2008 Oct;14(10):2183-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18755837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1981 Mar;67(3):535-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16661709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2000 Jun;6(6):844-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10864043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Apr 2;21(7):1811-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11927565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1982 Nov 25;257(22):13218-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7142141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Oct;60(1):79-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19500300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1986 Sep;7(5):385-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24302408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Dec;181(23):7256-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10572129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Mar;15(3):639-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jul 3;284(27):18218-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19414587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Nov 5;286(5442):1146-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10550050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2004 Apr;10(4):712-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15037780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1984 Aug 24;12(16):6547-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6089120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 May 1;89(9):3995-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1373891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Dec 1;17(23):2889-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14633974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1988 Jun 10;16(11):4777-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3387208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:155</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19358740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2003 May;9(5):574-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12702816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1968 Feb;59(2):453-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5238976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 24;102(21):7754-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15894610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Sep;26(18):6902-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16943431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Jan 15;20(1-2):231-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11226173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1978 Dec 21;521(2):576-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">737182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1977 May 17;16(10):2213-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">324516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Aug 17;17(16):4780-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9707437</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="J Ger, Gunilla" sort="J Ger, Gunilla" uniqKey="J Ger G" first="Gunilla" last="J Ger">Gunilla J Ger</name>
<name sortKey="Zheng, Bo" sort="Zheng, Bo" uniqKey="Zheng B" first="Bo" last="Zheng">Bo Zheng</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Chen, Peng" sort="Chen, Peng" uniqKey="Chen P" first="Peng" last="Chen">Peng Chen</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003065 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003065 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20836892
   |texte=   Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20836892" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020